A high-flow nasal cannula system with relatively low flow effectively washes out CO2 from the anatomical dead space in a sophisticated respiratory model made by a 3D printer
نویسندگان
چکیده
BACKGROUND Although clinical studies of the high-flow nasal cannula (HFNC) and its effect on positive end-expiratory pressure (PEEP) have been done, the washout effect has not been well evaluated. Therefore, we made an experimental respiratory model to evaluate the respiratory physiological effect of HFNC. METHODS An airway model was made by a 3D printer using the craniocervical 3D-CT data of a healthy 32-year-old male. CO2 was infused into four respiratory lung models (normal-lung, open- and closed-mouth models; restrictive- and obstructive-lung, open-mouth models) to maintain the partial pressure of end-tidal CO2 (PETCO2) at 40 mmHg. HFNC flow was changed from 10 to 60 L/min. Capnograms were recorded at the upper pharynx, oral cavity, subglottic, and inlet sites of each lung model. RESULTS With the normal-lung, open-mouth model, 10 L/min of HFNC flow decreased the subglottic PETCO2 to 30 mmHg. Increasing the HFNC flow did not further decrease the subglottic PETCO2. With the normal-lung, closed-mouth model, HFNC flow of 40 L/min was required to decrease the PETCO2 at all sites. Subglottic PETCO2 reached 30 mmHg with an HFNC flow of 60 L/min. In the obstructive-lung, open-mouth model, PETCO2 at all sites had the same trend as in the normal-lung, open-mouth model. In the restrictive-lung, open-mouth model, 20 L/min of HFNC flow decreased the subglottic PETCO2 to 25 mmHg, and it did not decrease further. As HFNC flow was increased, PEEP up to 7 cmH2O was gradually generated in the open-mouth models and up to 17 cmH2O in the normal-lung, closed-mouth model. CONCLUSIONS The washout effect of the HFNC was effective with relatively low flow in the open-mouth models. The closed-mouth model needed more flow to generate a washout effect. Therefore, HFNC flow should be considered based on the need for the washout effect or PEEP.
منابع مشابه
Corrigendum: A high-flow nasal cannula system set at relatively low flow effectively washes out CO2 from the anatomical dead space of a respiratory-system model
[This corrects the article on p. 105 in vol. 70, PMID: 28184277.].
متن کاملNasal high flow reduces hypercapnia by clearance of anatomical dead space in a COPD patient
Chronic obstructive pulmonary disease (COPD) with hypercapnia is associated with increased mortality. Non-invasive ventilation (NIV) can lower hypercapnia and ventilator loads but is hampered by a low adherence rate leaving a majority of patients insufficiently treated. Recently, nasal high flow (NHF) has been introduced in the acute setting in adults, too. It is an open nasal cannula system fo...
متن کاملHeated Humidified High-Flow Nasal Cannula Versus Nasal Continuous Positive Airway Pressure for the Facilitation of Extubation in Preterm Neonates with Respiratory Distress
Background: Heated humidified high-flow nasal cannula (HHHFNC) is gaining popularity as an alternative to nasal continuous positive airway pressure (nCPAP) therapy in the management of preterm neonates with respiratory distress due to ease of administration and patient comfort. However, limited evidence is available addressing its risks and benefits. To study the efficacy and safety of HHHFNC i...
متن کاملComparison of the Heated Humidified High-flow Nasal Cannula with Nasal Continuous Positive Airway Pressure as Primary Respiratory Support for Preterm Neonates: A Prospective Observational Study
Background: Heated humidified high-flow nasal cannula (HHHFNC) is gaining popularity in the management of respiratory distress in preterm neonates. However, it is not known whether it takes precedence over the gold standard nasal continuous positive airway pressure (NCPAP) in this age group as a primary mode of non-invasive ventilation (NIV). There is limited evidence ...
متن کاملComparison of Nasal Non-invasive Ventilation Methods in Preterm Neonates with Respiratory Distress Syndrome
Background: Humidified heated high flow nasal cannula (HHHFNC), nasal continuous positive airway pressure (NCPAP), and nasal intermittent positive pressure ventilation (NIPPV) are three nasal non-invasive ventilation methods. The purpose of this study was to compare these three methods in decreasing intubation and mechanical ventilation rate in preterm neonates with respiratory distress syndrom...
متن کامل